4.8 Article

The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage

Journal

BIOMATERIALS
Volume 26, Issue 1, Pages 63-72

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2004.02.046

Keywords

chondrocytes; cartilage tissue engineering; scaffold; cell culture; in vitro; in vivo

Ask authors/readers for more resources

A highly interconnecting and accessible pore network has been suggested as one of a number of prerequisites in the design of scaffolds for tissue engineering. In the present study, two processing techniques, compression-molding/particulate-leaching (CM), and 3D fiber deposition (3DF), were used to develop porous scaffolds from biodegradable poly(ethylene glycol)-terephthalate/ poly(butylene terephthalate) (PEGT/PBT) co-polymers with varying pore architectures. Three-dimensional micro-computed tomography (muCT) was used to characterize scaffold architectures and scaffolds were seeded with articular chondrocytes to evaluate tissue formation. Scaffold porosity ranged between 75% and 80%. Average pore size of tortuous CM scaffolds (182 pm) was lower than those of organized 3DF scaffolds (525 mum). The weight ratio of glycosaminoglycans (GAG)/DNA, as a measure of cartilage like tissue formation, did not change after 14 days of culture whereas, following subcutaneous implantation, GAG/DNA increased significantly and was significantly higher in 3DF constructs than in CM constructs, whilst collagen type II was present within both constructs. In conclusion, 3DF PEGT/PBT scaffolds create an environment in vivo that enhances cartilaginous matrix deposition and hold particular promise for treatment of articular cartilage defects. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available