4.6 Article

Modeling polymer electrolyte fuel cells with large density and velocity changes.

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 152, Issue 2, Pages A445-A453

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.1851059

Keywords

-

Ask authors/readers for more resources

A model fully coupling the flow, species transport, and electrochemical kinetics in polymer electrolyte fuel cells is presented to explore operation undergoing very large density and velocity variations. Comparisons are also made to a previous constant-flow model, which neglects the mass source/sink from the continuity equation and assumes constant gas density. Numerical results reveal large density (>50%) and velocity (>80%) variations occurring in the anode at anode stoichiometry of 1.2. In addition, the hydrogen concentration remained as high as the inlet owing to deceleration of the anode gas flow. Finally, the constant-flow model is accurate within 14% under common operating conditions, i.e., for anode stoichiometry ranging from 1.2 to 2.0. (C) 2005 The Electrochemical Society. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available