4.5 Article

Vascular endothelial growth factor and its receptor FIK-1 are expressed in the hippocampus following entorhinal deafferentation

Journal

NEUROSCIENCE
Volume 134, Issue 4, Pages 1167-1178

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2005.04.064

Keywords

astrocyte; entorhinal cortex lesion; FIK-1; hippocampus; neurite growth; VEGF

Categories

Ask authors/readers for more resources

Vascular endothelial growth factor (VEGF) has been thought of as a mitogen that promotes proliferation of endothelial cells and as a neurotrophic factor that stimulates neurogenesis and axonal growth in both peripheral and central nervous systems. To investigate the potential involvement of VEGF in the lesion-induced reorganization in the brain, the expression changes of VEGF and its receptor Flk-1 were analyzed in the mouse hippocampus after transections of the entorhinal afferents. In situ hybridization and immuno-histochemistry showed the time-dependent expression upregulation of VEGF mRNA and protein in the entorhinally denervated hippocampal stratum lacunosum-moleculare and dentate outer molecular layer, which initiated by 3 days postlesion, reached its maximum at 7-15 days postlesion, still persisted by 30 days postlesion for protein, and recovered to the normal levels at 30 days postlesion for mRNA and at 60 days postlesion for protein. Double labeling of VEGF and glial fibrillary acidic protein revealed that VEGF-expressing cells in the denervated areas were reactive astrocytes. Semi-quantitative RT-PCR analysis showed that VEGF receptor Flk-1 mRNA was also time-dependently upregulated in the deafferented hippocampus with its maximal elevation at 7-15 days postlesion while the Flt-1 mRNA levels remained unchanged at any time point we examined. Immunohistochemistry analysis also displayed the upregulation of Flk-1 protein in the denervated stratum lacunosum-moleculare and outer molecular layer with a time course similar to that of VEGF mRNA upregulation. Flk-1 receptors were found to be expressed not only by reactive astrocytes but also by neurites, which most likely belong to sprouting axons by 7 days postlesion and regrowing dendrites by 15-30 days postlesion. From these data we suggest that the spatiotemporal upregulation of VEGF and Flk-1 in the hippocampus is induced by entorhinal deafferentation and that VEGF may be involved in the structural reorganization in the deafferented hippocampus via directly or indirectly promoting neurite growth. (c) 2005 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available