4.6 Article

Kinetic measurements on methylidyne radical reactions with several hydrocarbons at low temperatures

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 7, Issue 15, Pages 2921-2927

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b506096f

Keywords

-

Ask authors/readers for more resources

The temperature dependences of the methylidyne radical reactions with methane, allene, methylacetylene and propene were studied. This work was carried out in a supersonic flow reactor coupled with pulsed laser photolysis (PLP) and laser-induced fluorescence (LIF) techniques. Three Laval nozzles were designed to provide uniform supersonic expansions of nitrogen at Mach 2 and of argon at Mach 2 and 3 to reach low temperatures, e.g. 170, 128 and 77 K, respectively. CH radicals were produced by PLP of CHBr3 at 266 nm and probed by LIF. The exponential decays of the CH fluorescence were acquired, hydrocarbons being introduced in excess. The rate constants for the CH + CH4 reaction are in good agreement with the temperature dependence proposed by Canosa et al. (A. Canosa, I. R. Sims, D. Travers, I. W. M. Smith and B. R. Rowe, Astron. Astrophys., 1997, 323, 644-651, ref. 1) i.e. 3.96 x 10(-8) (T/K)(-1.04) exp(-36.1 K/T) in the range 23-298 K. The rate constants of the CH + C3H4 (allene), CH + C3H4 (methylacetylene) and CH + C3H6 (propene) reactions exhibit a small temperature dependence between 77 and 170 K, with a maximum rate around 100 K close to (4.3-4.6) x 10(-10) cm(3) molecule(-1) s(-1).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available