4.5 Article

17 beta-estradiol-dependent activation of signal transducer and activator of transcription-1 in human fetal osteoblasts is dependent on Src kinase activity

Journal

ENDOCRINOLOGY
Volume 146, Issue 1, Pages 201-207

Publisher

ENDOCRINE SOC
DOI: 10.1210/en.2004-0486

Keywords

-

Funding

  1. NATIONAL INSTITUTE OF ARTHRITIS AND MUSCULOSKELETAL AND SKIN DISEASES [R01AR045233] Funding Source: NIH RePORTER
  2. NIAMS NIH HHS [AR 45233] Funding Source: Medline

Ask authors/readers for more resources

Estrogen is essential for normal growth and remodeling of bone. Although the mechanism of estrogen action on bone cells has been widely investigated, the full spectrum of signal transduction pathways activated by estrogen is unknown. In this report, we investigate the effects of the gonadal hormone 17beta-estradiol on the regulation of signal transducer and activator of transcription-1 (Stat1) protein in cultured human fetal osteoblast cells, devoid of the classical estrogen receptors (ERs). 17beta-Estradiol ( 10 nM) led to rapid ( within 15 min) activation of Stat1 protein as indicated by increases in tyrosine phosphorylation and DNA binding activity. Also, 17beta-estradiol increased gamma-activated sequence-dependent transcription in transient transfection assays, suggesting an increase in Stat protein-dependent transcription. Estrogen-dependent Stat1 activation was blocked in cells that transiently express dominant-negative Stat1 mutant protein. Activation of Stat1 by 17beta-estradiol was not inhibited by ER antagonist ICI 182,780, providing further evidence that it is not dependent on classical ERs. 17beta-Estradiol induced rapid ( within 15 min) Stat1 phosphorylation and stimulated gamma-activated sequence-dependent transcription in ER-negative breast cancer cells, indicating that these results are not unique to bone cells. The rapid estrogenic effect involving the phosphorylation and activation of Stat1 was blocked in the presence of Src family kinase inhibitor PP2; activated Stat1 was associated with Src protein in estrogen-treated cells. These findings indicate the requirement for Src kinase pathways in estrogen-mediated Stat1 activation. Thus, the ER-independent activation of Stat1 in 17beta-estradiol-treated osteoblast and breast cancer cells may partially mediate the actions of estrogen on target cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available