4.6 Article

The electronic spectrum of protonated adenine: Theory and experiment

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 7, Issue 18, Pages 3306-3316

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b507422c

Keywords

-

Ask authors/readers for more resources

In this work we present the results of a combined experimental and theoretical study concerned with the question how a proton changes the electronic spectrum and dynamics of adenine. In the experimental part, isolated adenine ions have been formed by electro-spray ionisation, stored, mass-selected and cooled in a Paul trap and dissociated by resonant photoexcitation with ns UV laser pulses. The S-0 - S-1 spectrum of protonated adenine recorded by fragment ion detection lies in a similar energy range as the first pi pi* transition of neutral 9H-adenine. It shows a. at onset with a broad substructure, indicating a large S-0 -> S-1 geometry shift and an ultra-short lifetime. In the theoretical part, relative energies of the ground and the excited states of the most important tautomers have been calculated by means of a combined density functional theory and multi-reference configuration interaction approach. Protonation at the nitrogen in position 1 of the neutral 9H-adenine tautomer yields the most stable protonated adenine species, 1H-9H-A(+). The 3H-7H-A(+) and the 3H-9H-A(+) tautomers, formed by protonation of 7H- and 9H-adenine in 3-position, are higher in energy by 162 cm(-1) and 688 cm(-1), respectively. Other tautomers lie at considerably higher energies. Calculated vertical absorption spectra are reported for all investigated tautomers whereas geometry optimisations of excited states have been carried out only for the most interesting ones. The S1 state energies and geometries are found to depend on the protonation site. The theoretical data match best with the experimental onset of the spectrum for the 1H-9H-A(+) tautomer although we cannot de. nitely exclude contributions to the experimental spectrum from the 3H-7H-A(+) tautomer at higher energies. The vertical S-0 -> S-1 excitation energy is similar to the one in neutral 9H-adenine. As for the neutral adenine, we find a conical intersection of the S-1 of protonated adenine with the ground state in an out-of-plane coordinate but at lower energies and accessible without barrier.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available