4.0 Article

Arterial wall response to ex vivo exposure to oscillatory shear stress

Journal

JOURNAL OF VASCULAR RESEARCH
Volume 42, Issue 6, Pages 535-544

Publisher

KARGER
DOI: 10.1159/000088343

Keywords

arterial metabolism; atherosclerosis; matrix metalloproteinases; oscillation; plasminogen activator inhibitor-1; shear stress

Ask authors/readers for more resources

Background: The aim of this study was to analyze the arterial wall response to plaque-prone hemodynamic environments, known to occur mainly in areas of arterial trees such as bifurcations and branching points. In these areas, the vasculature is exposed to cyclically reversing flow that induces an endothelial dysfunction predisposing thus arteries to local development of atherosclerotic plaques. Methods: We used an ex vivo perfusion system that allows culturing arterial segments under different hemodynamic conditions. Porcine carotid arteries were exposed for 3 days to unidirectional high and low shear stress (6 +/- 3 and 0.3 +/- 0.1 dyn/cm(2)) as well as to oscillatory shear stress (0.3 +/- 3 dyn/cm(2)). This latter condition mimics the hemodynamics present at plaque-prone areas. At the end of the perfusion, the influence of different flow patterns on arterial metabolism was assessed in terms of matrix turnover as well as of smooth muscle cell function, differentiation and migration. Results: Our results show that after 3 days of perfusion none of the applied conditions influence smooth muscle cell phenotype retaining their full contraction capacity. However, an increase in the expression level of matrix metalloproteinase-2 and -9, as well as a decrease in plasminogen activator inhibitor-1 expression were observed in arteries exposed to oscillatory shear stress when compared to arteries exposed to unidirectional shear stress. Conclusion: These observations suggest that plaque-prone hemodynamic environment triggers a vascular wall remodelling process and promotes changes in arterial wall metabolism, with important implication in atherogenesis. Copyright (C) 2005 S. Karger AG, Basel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available