4.5 Article

Multiple mechanisms are involved in Ah receptor-mediated cell cycle arrest

Journal

MOLECULAR PHARMACOLOGY
Volume 67, Issue 1, Pages 88-96

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.104.002410

Keywords

-

Funding

  1. NIEHS NIH HHS [R01 ES 07800, ES 06676] Funding Source: Medline
  2. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [R01ES007800, P30ES006676] Funding Source: NIH RePORTER

Ask authors/readers for more resources

The liver is the only solid organ that can respond to major tissue loss or damage by regeneration to restore liver biomass. The aryl hydrocarbon receptor (AhR) agonist 2,3,7,8-tetrachlorodibenzop- dioxin ( TCDD) can disrupt the regenerative process, as evidenced by suppression of DNA synthesis in rat primary hepatocytes in culture and in vivo liver regeneration after partial hepatectomy. Independent observations demonstrated that AhR-mediated G(1) phase cell cycle arrest depends on an interaction with the retinoblastoma tumor suppressor protein (pRb), but differences exist regarding proposed mechanisms of action. Two distinct models have been proposed, one supporting the AhR-pRb interaction functioning in corepression of E2F activity and the other favoring an AhR-pRb interaction participating in transcriptional coactivation of genes encoding G(1) phase regulatory proteins. In the present study, experiments in rat hepatoma cells using dominant-negative DNA-binding-defective AhR and Ah receptor nuclear translocator ( Arnt) mutants provided evidence that TCDD-induced AhR-mediated G(1) arrest is only partially regulated by direct AhR transcriptional activity, suggesting that both coactivation and corepression are involved. Studies using a small interfering RNA to down-regulate Arnt protein expression revealed that TCDD-induced G(1) arrest is absolutely dependent on the Arnt protein.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available