4.8 Article

Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene

Journal

CARBON
Volume 43, Issue 2, Pages 369-374

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2004.09.020

Keywords

graphitic carbon; pyrolysis; electron microscopy, Raman spectroscopy, X-ray diffraction

Ask authors/readers for more resources

Carbon-encapsulated Fe nanoparticles with size between 5 and 20 nm were synthesized via a picric acid-detonation-induced pyrolysis of ferrocene, which is characterized by a self-heating and extremely fast process. The nanoparticles exhibit well-constructed core-shell structures, with bcc-Fe cores and graphitic shells. The graphitic shells can protect effectively the cores against the attack of HNO3 solution. The formation of the core-shell nanoparticles can be selectively controlled by adjusting the composition of the picric acid-ferrocene mixture, which determines C/Fe atomic ratio of the reaction system. The core-shell nanoparticles are preferably formed at low C/Fe atomic ratios, while tubular structures are formed at high C/Fe ratio. The possible pathway for the carbon-encapsulated Fe nanoparticles formation is discussed briefly. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available