4.8 Article

Vacancy formation process in carbon nanotubes: First-principles approach

Ask authors/readers for more resources

The electronic and structural properties of a single-walled carbon nanotube (SWNT) under mechanical deformation are studied using first-principles calculations based on the density functional theory. A force is applied over one particular C-atom with enough strength to break the chemical bonds between the atom and its nearest neighbors, leading to a final configuration represented by one tube with a vacancy and an isolated C-atom inside the tube. Our investigation demonstrates that there is a tendency that the first bond to break is the one most parallel possible to the tube axis and, after, the remaining two other bonds are broken. The analysis of the electronic charge densities, just before and after the bonds breaking, helps to elucidate how the vacancy is formed on an atom-by-atom basis. In particular, for tubes with a diameter around 11 Angstrom, it is shown that the chemical bonds start to break only when the externally applied force is of the order of 14 nN and it is independent of the chirality. The formation energies for the vacancies created using this process are almost independent of the chirality, otherwise the bonds broken and the reconstruction are dependent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available