4.3 Article

Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00355.2004

Keywords

dietary fats; insulin; islet cells; metabolic syndrome

Categories

Ask authors/readers for more resources

We previously reported that prenatal and suckling exposure to a maternal diet rich in animal fat leads to cardiovascular dysfunction in young adult rat offspring with subsequent development of dyslipidemia and hyperglycemia. We have further investigated glucose homeostasis in adult female offspring by euglycemic-hyperinsulinemic clamp and by dynamic assessment of glucose-stimulated insulin secretion in isolated, perifused pancreatic islet cells. Additionally, given the link between reduced mitochondrial DNA ( mtDNA) content and the development of type 2 diabetes mellitus, we have measured mtDNA in organs from young adult animals. Sprague-Dawley rats were fed a diet rich in animal fat or normal chow throughout pregnancy and weaning. Infusion of insulin (5 mU . kg(-1) . min(-1)) resulted in a higher steady-state plasma insulin concentration in 1-year-old offspring of fat-fed dams (OHF, n = 4) vs. offspring of control dams (OC, n = 4, P < 0.01). Glucose-stimulated insulin secretion in isolated islets from 9-mo-old OHF was significantly reduced compared with OC (n = 4, P < 0.05). Transmission electron micrography showed altered insulin secretory granule morphology in OHF pancreatic beta-cells. Kidney mtDNA was reduced in 3-mo-old OHF [16S-to-18S gene ratio: OC (n = 10) 1.05 +/- 0.19 vs. OHF (n = 10) 0.66 +/- 0.06, P < 0.05]. At 6 mo, gene chip microarray of OHF aorta showed reduced expression of the mitochondrial genome. Prenatal and suckling exposure to a diet rich in animal fat leads to whole body insulin resistance and pancreatic beta-cell dysfunction in adulthood, which is preceded by reduced tissue mtDNA content and altered mitochondrial gene expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available