4.4 Article

Intact human holo-transf errin interaction with oxaliplatin

Journal

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
Volume 19, Issue 14, Pages 1956-1962

Publisher

WILEY
DOI: 10.1002/rcm.2010

Keywords

-

Ask authors/readers for more resources

We report the interaction of intact human holo-transferrin (holo-Tf) with oxaliplatin (an anticancer drug), and the characterization of a complex composed of (1:1) intact holo-Tf and the parent oxaliplatin molecule using nanoelectrospray ionization quadrupole time-of-flight mass spectrometry (nanoESI-QTOF-MS). The molecular weight of this complex was determined to be 80 077 Da, which was an increase of 397 mass units compared to the protein alone (79 680 Da), suggesting that a parent drug molecule was bound to the intact protein. We further examined the interaction between the intact protein and oxaliplatin using size-exclusion high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICPMS). The protein complex and free oxaliplatin were separated by HPLC and quantitatively determined by simultaneous monitoring of both Pt-195 and Fe-56 using ICPMS. The HPLC/ICPMS detected both Pt and Fe signals at retention time of 2.6 min, identifying the protein-drug complex. The Fe signal at 2.6 min did not change with the increase in incubation time of the reaction mixture containing holo-Tf and oxaliplatin, while the Pt signal at the same retention time increased over time, further demonstrating that the formation of this complex does not affect the protein-bound Fe. The binding constant of the (1:1) intact human holo-Tf-oxaliplatin complex was determined to be 7.7 x 10(5) M-1. Both nanoESI-MS and HPLC/ICPMS results support that the holo-Tf and parent oxaliplatin molecules form complexes through non-covalent binding, suggesting that holo-Tf may be a useful carrier for oxaliplatin delivery. Copyright (c) 2005 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available