4.5 Article

Remote preparation of quantum states

Journal

IEEE TRANSACTIONS ON INFORMATION THEORY
Volume 51, Issue 1, Pages 56-74

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIT.2004.839476

Keywords

cryptography; entanglement; large deviations; teleportation; tradeoff

Ask authors/readers for more resources

Remote state preparation is the variant of quantum state teleportation in which the sender knows the quantum state to be communicated. The original paper introducing teleportation established minimal requirements for classical communication and entanglement but the corresponding limits for remote state preparation have remained unknown until now: previous work has shown, however, that it not only requires less classical communication but also gives rise to a tradeoff between these two resources in the appropriate setting. We discuss this problem from first principles, including the various choices one may follow in the definitions of the actual resources. Our main result is a general method of remote state preparation for arbitrary states of many qubits, at a cost of 1 bit of classical communication and 1 bit of entanglement per qubit sent. In this universal formulation, these ebit and chit requirements are shown to be simultaneously optimal by exhibiting a dichotomy. Our protocol then yields the exact tradeoff curve for memoryless sources of pure states (including the case of incomplete knowledge of the ensemble probabilities), based on the recently established quantum-classical tradeoff for visible quantum data compression. A variation of that method allows us to solve the even more general problem of preparing entangled states between sender and receiver (i.e., purifications of mixed state ensembles). The paper includes an extensive discussion of our results, including the impact of the choice of model on the resources, the topic of obliviousness, and an application to private quantum channels and quantum data hiding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available