4.1 Article

Spin-dependent recombination in GaAsN solid solutions

Journal

JETP LETTERS
Volume 82, Issue 7, Pages 455-458

Publisher

AMER INST PHYSICS
DOI: 10.1134/1.2142877

Keywords

-

Ask authors/readers for more resources

Room-temperature spin-dependent recombination in a series of GaAs1 - xNx solid solutions (x = 2.1, 2.7, 3.4%) has been observed as manifested by a more than threefold decrease in intensity of the edge photoluminescence upon switching from circular to linear polarization of the exciting light or upon the application of a transverse magnetic field (similar to 300 G). The interband absorption of the circularly polarized light is accompanied by the spin polarization of conduction electrons, which reaches 35% with an increase in the pumping level. The observed effects are explained in terms of the dynamic polarization of deep paramagnetic centers and the spin-dependent trapping of conduction electrons on these centers. The electron spin relaxation time, as estimated from the dependence of the edge photoluminescence depolarization in the transverse magnetic field (the Hanle effect) on the pumping intensity, is on the order of 1 ns. According to the adopted theory, the electron spin relaxation time in the presence of spin-dependent recombination is determined by a slow spin relaxation of localized electrons. The sign (positive) of the g factor of localized electrons has been experimentally determined from the direction of the magnetic-field-induced rotation of their average spin observed in the three GaAsN crystals studied. (C) 2005 Pleiades Publishing, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available