4.7 Article

The influence of NaOH on the stability of paraffinic crude oil emulsion

Journal

FUEL
Volume 84, Issue 2-3, Pages 183-187

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2004.09.001

Keywords

asphaltene; ASP flooding; interfacial tension; interfacial pressure; water-in-crude oil emulsion

Ask authors/readers for more resources

The alkaline-surfactant-polymer flooding using sodium hydroxide as the alkali component to enhance oil recovery at the on shore oil fields at Daqing in China has brought new problems for the oil industry. Even though, the reservoir contained paraffinic crude oil, the alkali added formed stable water-in-crude oil emulsion and de-emulsification process was necessary to separate oil and water. The problems related in the enhanced oil recovery process using the alkaline-surfactant-polymer flooding technique in the Daqing oil field have been investigated in the laboratory using fractions of Daqing crude oil. The oil was separated into asphaltene and aliphatic fractions and then used in an additive free jet oil to form model oils. The emulsion stability of each of the water-in-model oil emulsions formed between water or 0.6% sodium hydroxide solution and model oil was investigated. The interfacial properties such as interfacial tension and interfacial pressure of the systems were also measured. These in combination with the chemical nature of the fractions were used to get insight into the problem related to the ASP flooding technique using sodium hydroxide as the alkaline component. The study reveals that the sodium hydroxide solution reacts with fatty acids in the aliphatic fraction of the crude oil and/or with the fatty acids formed from the slow oxidation of long chain hydrocarbons, and form soap like interfacially active components. These accumulate at the crude oil-water interface and contribute to the stability of the oil/water emulsion. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available