4.6 Article

H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability

Journal

ELECTROCHEMISTRY COMMUNICATIONS
Volume 7, Issue 1, Pages 62-67

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.elecom.2004.11.009

Keywords

H-titanate; nanotubes; intercalation; electrochemical behavior; lithium battery

Ask authors/readers for more resources

Nanostructured electrodes have been shown to exhibit enhanced rate capability and large discharge/charge capacity for lithium intercalation and extraction. In this paper, electrode made of H-titanate nanotubes show large lithium intercalation capacity, high discharge/charge rate capabilities and excellent cycling stabilities. A facile way is adopted to fabricate well-dispersed nanostructured electrode film by in situ ultrasonic dispersion in N-methyl pyrrolidone. The electrode film containing H-titanate nanotubes, conductive black and polyvinylidene fluoride binder is coated on aluminum foil. The material exhibits an initial discharge capacity of 282.2 mAh/g at a current density of 0.24 A/g, and keeps a stable cycling discharge capacity of 210, 185.7 and 165.9 mAh/g at current density of 0.24, 1.0 and 2.0 A/g, respectively, demonstrating large reversible capacity and excellent rate capabilities. An about 100% of coulombic efficiency implies the perfect reversibility of lithium intercalation into and release from the H-titanate nanotubes and thus the extraordinary cycling stability. The results indicate that this layered, open ended nanotubes may become a candidate for novel lithium storage material with high capacity, high rate capability and excellent cycling stability. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available