4.2 Article

Geographical patterns of adaptation within a species' range: interactions between drift and gene flow

Journal

JOURNAL OF EVOLUTIONARY BIOLOGY
Volume 19, Issue 1, Pages 203-215

Publisher

WILEY
DOI: 10.1111/j.1420-9101.2005.00976.x

Keywords

genetic drift; local adaptation; migration; phenotypic clines; species' range

Ask authors/readers for more resources

We use individual-based stochastic simulations and analytical deterministic predictions to investigate the interaction between drift, natural selection and gene flow on the patterns of local adaptation across a fragmented species' range under clinally varying selection. Migration between populations follows a stepping-stone pattern and density decreases from the centre to the periphery of the range. Increased migration worsens gene swamping in small marginal populations but mitigates the effect of drift by replenishing genetic variance and helping purge deleterious mutations. Contrary to the deterministic prediction that increased connectivity within the range always inhibits local adaptation, simulations show that low intermediate migration rates improve fitness in marginal populations and attenuate fitness heterogeneity across the range. Such migration rates are optimal in that they maximize the total mean fitness at the scale of the range. Optimal migration rates increase with shallower environmental gradients, smaller marginal populations and higher mutation rates affecting fitness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available