4.5 Article

Collagen degradation products modulate matrix metal loproteinase expression in cultured articular chondrocytes

Journal

JOURNAL OF ORTHOPAEDIC RESEARCH
Volume 24, Issue 1, Pages 63-70

Publisher

WILEY
DOI: 10.1002/jor.20001

Keywords

cartilage; degradation; catabolism

Categories

Funding

  1. NIAMS NIH HHS [2P50-AR39239] Funding Source: Medline
  2. NATIONAL INSTITUTE OF ARTHRITIS AND MUSCULOSKELETAL AND SKIN DISEASES [P50AR039239] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Destruction of collagen within osteoarthritic cartilage depends in part on collagen-degrading matrix metalloproteases (MMP). Degradative fragments of type II collagen (Col II) occur in normal and in osteoarthritic cartilage, and may contribute to regulation of matrix turnover by interfering with normal cell-matrix communication pathways. Therefore, the effects of different types of collagen fragments on mRNA and protein levels of MMP-2, MMP-3, MMP-9, and MMP-13 in cultured bovine articular knee chondrocytes and explants were examined. Primary chondrocytes and explants were incubated with fragments from whole cartilage collagen matrix (Colf) and from purified type 11 collagen (Col2f), or with a synthetic 29-mer peptide representing the amino-terminal domain of type II collagen (Ntelo). Gelatin zymography revealed increases of proMMP-2, a shift towards active MMP-2 and increases in proMMP-9, depending on the type of fragment. In situ hybridization of cartilage sections displayed MMP-3 mRNA in virtually all cells. Moderate to strong increases in MMP-2, MMP-3, MMP-9, and MMP-13 mRNA levels were detected by quantitative PCR. The results demonstrate stimulating effects of collagen fragments on both mRNA and/or protein from MMP -2, -3, -9, and -13, and suggest a novel mechanism of MMP induction and activation that includes a particular role for N-telo in controlling catabolic pathways of matrix turnover. (c) 2005 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available