4.7 Article

Aeolian-fluvial interaction: evidence for Late Quaternary channel change and wind-rift linear dune formation in the northwestern Simpson Desert, Australia

Journal

QUATERNARY SCIENCE REVIEWS
Volume 25, Issue 1-2, Pages 142-162

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.quascirev.2005.02.007

Keywords

-

Ask authors/readers for more resources

In central Australia, the most easterly extent of the MacDonnell Ranges border the Simpson Desert dunefield where widely spaced strike ridges intercept and isolate pockets of broad-crested linear dunes that reflect regional changes in Late Quaternary climate, flow regime and channel avulsion. An energetic Todd River reworked the eastern part of Camel Flat basin from 75-65 ka until the Last Glacial Maximum (LGM) when it shifted eastwards, but with some flows persisting through the basin until about 10 ka. Resulting desert surfaces of different age facilitate temporal comparisons of linear dune formation. Fine-grained red dunes, 75-65 ka in age occur on the western floor of the basin and are ramped against the foot-slopes of the range. After the LGM, and especially during the Holocene, the river's departure enabled small, pale-coloured, closely spaced, coarser-textured linear dunes to form on the abandoned floodplain in the eastern basin, their orientation 20 degrees farther west than the larger and older red dunes. This realignment indicates that the Australian wind-whorl shifted southwards some 160 km or 1.5 degrees after the LGM. Linear dunes in the northwestern Simpson Desert were formed by wind rifting involving vertical accretion of sand from a proximal source, not by long-distance sand transport with linear extension. The blocking ranges have caused negligible downwind sediment accumulation over the past 75 ka. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available