4.5 Article

Osteoclastogenesis in the nonadherent cell population of human bone marrow is inhibited by rhBMP-2 alone or together with rhVEGF

Journal

JOURNAL OF ORTHOPAEDIC RESEARCH
Volume 24, Issue 1, Pages 29-36

Publisher

WILEY
DOI: 10.1002/jor.20010

Keywords

BMP-2; VEGF; osteoclastogenesis; human bone marrow; nonadherent cell

Categories

Ask authors/readers for more resources

During bone development and repair, angiogenesis, osteogenesis, and bone remodeling are closely associated processes that share some common mediators. In the present study nonadherent human bone marrow mononuclear cells under the induction of sRANKL and M-CSF, differentiated into osteoclasts with TRAP-positive staining, VNR expression, and Ca-P resorptive activity. The effects of various combinations of rhBMP-2 (0,3,30, and 300 ng/mL) and rhVEGF (0 and 25 ng/mL) on osteoclastogenesis potentials were examined in this experimental system. The percentages of TRAP-positive multiple nucleated cells represent osteoclast differentiation potential, and the percentages of resorptive areas in the Ca-P coated plates resemble osteoclast resorption capability. The presence of rhBMP-2 at 30 and 300 ng/mL showed inhibitory effects on osteoclast differentiation and their resorptive capability in the human osteoclast culture system. rhVEGF (25 ng/mL) enhanced the resorptive function of osteoclast whenever it was used alone or combined with 3 ng/mL rhBMP-2. However, rhVEGF-induced resorptive function was inhibited by 30 ng/mL and 300 ng/mL rhBMP-2 in a dose-dependent manner. Statistical analysis demonstrated that an interactive effect exists between rhBMP-2 and rhVEGF on human osteoclastogenesis. These findings suggested that an interactive regulation may exist between BMPs and VEGF signaling pathways during osteoclastogenesis; exact mechanisms are yet to be elucidated. (c) 2005 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available