4.4 Article

Correlation between computed gas-phase and experimentally determined solution-phase infrared spectra: Models of the iron-iron hydrogenase enzyme active site

Journal

JOURNAL OF COMPUTATIONAL CHEMISTRY
Volume 27, Issue 12, Pages 1454-1462

Publisher

WILEY
DOI: 10.1002/jcc.20456

Keywords

infrared spectroscopy; prediction of infrared spectra; simulation of infrared spectra; iron-iron hydrogenase model complexes; iron-carbonyl complexes

Ask authors/readers for more resources

Gas-phase density functional theory calculations (B3LYP, double zeta plus polarization basis sets) are used to predict the solution-phase infrared spectra for a series of CO- and CN-containing iron complexes. It is shown that simple linear scaling of the computed C-O and C-N stretching frequencies yields accurate predictions of the the experimentally determined v(CO) and v(CN) values for a variety of complexes of different charges and in solvents of varying polarity. As examples of the technique, the resulting correlation is used to assign structures to spectroscopically observed but structurally ambiguous species in two different systems. For the (mu-SCH2C2H2CH2S)[Fe(CO)(3)](2) complex in tetrahydrofuran solution, our calculations show that the initial electrochemical reduction process leads to a simple one-electron reduced product with a structure very similar to the (mu-SCH,CH2CH2S)[Fe(CO)(3)](2) parent complex. For the iron-iron hydrogenase enzyme active site, our computations show that the absence or presence of a water molecule near the distal iron center (the iron center further from the [4Fe4S] cluster and protein backbone) has very little effect on the predicted infrared spectra. (c) 2006 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available