3.8 Article Proceedings Paper

The impact of breeding to reduce residual feed intake on enteric methane emissions from the Australian beef industry

Journal

AUSTRALIAN JOURNAL OF EXPERIMENTAL AGRICULTURE
Volume 46, Issue 6-7, Pages 813-820

Publisher

CSIRO PUBLISHING
DOI: 10.1071/EA05300

Keywords

beef industry; greenhouse gas; feed effciency; residual feed intake

Ask authors/readers for more resources

The expected reduction in methane emissions from the Australian beef herd resulting from using bulls identified as being more feed efficient as a result of having a lower residual feed intake (RFI) was modelled, both in a single herd in southern Australia and in the national herd. A gene flow model was developed to simulate the spread of improved RFI genes through a breeding herd over 25 years, from 2002 to 2026. Based on the estimated gene flow, the voluntary feed intakes were revised annually for all beef classes using livestock populations taken from the Australian National Greenhouse Gas Inventory (NGGI). Changes in emissions (kg methane/animal.year) associated with the reduction in feed intake were then calculated using NGGI procedures. Annual enteric methane emissions from both the individual and national herd were calculated by multiplying the livestock numbers in each beef class by the revised estimates of emissions per animal. For an individual adopting herd, the annual methane abatement in year 25 of selection was 15.9% lower than in year 1. For the national herd, differential lags and limits to adoption were assumed for northern and southern Australia. The cumulative reduction in national emissions was 568 100t of methane over 25 years, with annual emissions in year 25 being 3.1% lower than in year 1. It is concluded that selection for reduced RFI will lead to substantial and lasting methane abatement, largely as a consequence of its implementation as a breeding objective for the grazing beef herd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available