4.6 Article

Raman spectroscopic monitoring of droplet polymerization in a microfluidic device

Journal

ANALYST
Volume 131, Issue 9, Pages 1027-1033

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b603693g

Keywords

-

Ask authors/readers for more resources

Microfluidic methodologies are becoming increasingly important for rapid formulation and screening of materials, and development of analytical tools for multiple sample screening is a critical step in achieving a combinatorial 'lab on a chip' approach. This work demonstrates the application of Raman spectroscopy for analysis of monomer composition and degree of conversion of methacrylate-based droplets in a microfluidic device. Droplet formation was conducted by flow focusing on the devices, and a gradient of component composition was created by varying the flow rates of the droplet-phase fluids into the microchannels. Raman data were collected using a fiber optic probe from a stationary array of the droplets/particles on the device, followed by partial least squares (PLS) calibration of the first derivative (1600 cm(-1) to 1550 cm(-1)) allowing successful measurement of monomer composition with a standard error of calibration (SEC) of +/- 1.95% by volume. Following photopolymerization, the percentage of double bond conversion of the individual particles was calculated from the depletion of the normalized intensity of the C=C stretching vibration at 1605 cm(-1). Raman data allowed accurate measurement of the decrease in double bond conversion as a function of increasing crosslinker concentration. The results from the research demonstrate that Raman spectroscopy is an effective, on-chip analytical tool for screening polymeric materials on the micrometre scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available