4.6 Article

Detection of As(III) via oxidation to As(V) using platinum nanoparticle modified glassy carbon electrodes: arsenic detection without interference from copper

Journal

ANALYST
Volume 131, Issue 4, Pages 516-521

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b513686e

Keywords

-

Ask authors/readers for more resources

The electrochemical detection of As(III) was investigated on a platinum nanoparticle modified glassy carbon electrode in 1 M aqueous HClO4. Platinum nanoparticle modified glassy carbon electrodes were prepared by potential cycling in 0.1 M aqueous KCl containing 1 mM K2PtCl6. In each potential cycle, the potential was held at + 0.5 V for 0.01 s and at -0.7 V for 10 s. 25 cycles were optimally used to prepare the electrodes. The resulting electrode surfaces were characterized with AFM. The response to arsenic(III) on the modified electrode was examined using cyclic voltammetry and linear sweep voltammetry. By using the As(III) oxidation peak for the analytical determination, there is no interference from Cu(II) if present in contrast to the other metal surfaces (especially gold) typically used for the detection of arsenic; Cu(II) precludes the use of the As(0) to As(III) peak for quantitative anodic stripping voltammetry measurements due to the formation of Cu3As2 and an overlapping interference peak from the stripping of Cu(0). After optimization, a LOD of 2.1 +/- 0.05 ppb was obtained using the direct oxidation of As(III) to As(V), while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb, suggesting the method may have practical utility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available