4.8 Article

SOX10 Ablation Arrests Cell Cycle, Induces Senescence, and Suppresses Melanomagenesis

Journal

CANCER RESEARCH
Volume 73, Issue 18, Pages 5709-5718

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-12-4620

Keywords

-

Categories

Funding

  1. National Human Genome Research Institute, NIH
  2. National Health and Medical Research Council of Australia (NHMRC)

Ask authors/readers for more resources

The transcription factor SOX10 is essential for survival and proper differentiation of neural crest cell lineages, where it plays an important role in the generation and maintenance of melanocytes. SOX10 is also highly expressed in melanoma tumors, but a role in disease progression has not been established. Here, we report that melanoma tumor cell lines require wild-type SOX10 expression for proliferation and SOX10 haploinsufficiency reduces melanoma initiation in the metabotropic glutamate receptor 1 (Grm1(Tg)) transgenic mouse model. Stable SOX10 knockdown in human melanoma cells arrested cell growth, altered cellular morphology, and induced senescence. Melanoma cells with stable loss of SOX10 were arrested in the G(1) phase of the cell cycle, with reduced expression of the melanocyte determining factor microphthalmia-associated transcription factor, elevated expression of p21WAF1 and p27KIP2, hypophosphorylated RB, and reduced levels of its binding partner E2F1. As cell-cycle dysregulation is a core event in neoplastic transformation, the role for SOX10 in maintaining cell-cycle control in melanocytes suggests a rational new direction for targeted treatment or prevention of melanoma. (C) 2013 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available