4.6 Article

Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators

Journal

SOLAR ENERGY
Volume 80, Issue 1, Pages 111-120

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2005.02.012

Keywords

solar thermal power; central receiver system; CRS; gas turbine; combined cycle; multiple apertures; heliostat field; HFLCAL

Categories

Ask authors/readers for more resources

When striving for maximum efficiencies in solar thermal central receiver systems (CRS) the use of gas turbines with bottoming cycles is inevitable. Pressurized volumetric receivers have proven their feasibility and good performance, and their integration into gas turbine cycles has been demonstrated. One disadvantage of this system is the necessity to use secondary concentrators. The sunlight has to be concentrated into the relatively small glass windows of the receiver, which leads to a limited view cone. This means that of all the possible heliostat positions around the tower, only those within the ellipse, resulting from the section boundary of the view cone with the ground plane, are usable. For small systems, for which tower costs are small, the resulting heliostat field layout is similar. with or without secondary concentrator. For large systems, which are more cost-effective, tower costs become significant, and the losses due to atmospheric attenuation and spillage dominate over the cosine losses. Thus, the purely North-oriented fields become increasingly sub-optimal. This article shall demonstrate at what power levels this problem can be alleviated by not using a single, North-oriented aperture, but up to six apertures-each of them associated with a separate heliostat field. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available