4.4 Article

Bayesian Updating with Structural Reliability Methods

Journal

JOURNAL OF ENGINEERING MECHANICS
Volume 141, Issue 3, Pages -

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)EM.1943-7889.0000839

Keywords

Bayesian updating; Structural reliability; Sampling; Measurements; Monitoring; FEM

Ask authors/readers for more resources

Bayesian updating is a powerful method to learn and calibrate models with data and observations. Because of the difficulties involved in computing the high-dimensional integrals necessary for Bayesian updating, Markov chain Monte Carlo (MCMC) sampling methods have been developed and successfully applied for this task. The disadvantage of MCMC methods is the difficulty of ensuring the stationarity of the Markov chain. We present an alternative to MCMC that is particularly effective for updating mechanical and other computational models, termed Bayesian updating with structural reliability methods (BUS). With BUS, structural reliability methods are applied to compute the posterior distribution of uncertain model parameters and model outputs in general. An algorithm for the implementation of BUS is proposed, which can be interpreted as an enhancement of the classic rejection sampling algorithm for Bayesian updating. This algorithm is based on the subset simulation, and its efficiency is not dependent on the number of random variables in the model. The method is demonstrated by application to parameter identification in a dynamic system, Bayesian updating of the material parameters of a structural system, and Bayesian updating of a randomfield-based finite-element model of a geotechnical site. (C) 2014 American Society of Civil Engineers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available