4.6 Review

What are the sources of exposure to eight frequently used phthalic acid esters in Europeans?

Journal

RISK ANALYSIS
Volume 26, Issue 3, Pages 803-824

Publisher

WILEY
DOI: 10.1111/j.1539-6924.2006.00770.x

Keywords

consumer exposure; consumer products; exposure modeling; exposure pathways; phthalates; plasticizers

Ask authors/readers for more resources

Phthalic acid esters (phthalates) are used as plasticizers in numerous consumer products, commodities, and building materials. Consequently, phthalates are found in human residential and occupational environments in high concentrations, both in air and in dust. Phthalates are also ubiquitous food and environmental contaminants. An increasing number of studies sampling human urine reveal the ubiquitous phthalate exposure of consumers in industrialized countries. At the same time, recent toxicological studies have demonstrated the potential of the most important phthalates to disturb the human hormonal system and human sexual development and reproduction. Additionally, phthalates are suspected to trigger asthma and dermal diseases in children. To find the important sources of phthalates in Europeans, a scenario-based approach is applied here. Scenarios representing realistic exposure situations are generated to calculate the age-specific range in daily consumer exposure to eight phthalates. The scenarios demonstrate that exposure of infant and adult consumers is caused by different sources in many cases. Infant consumers experience significantly higher daily exposure to phthalates in relation to their body weight than older consumers. The use of consumer products and different indoor sources dominate the exposure to dimethyl, diethyl, benzylbutyl, diisononyl, and diisodecyl phthalates, whereas food has a major influence on the exposure to diisobutyl, dibutyl, and di-2-ethylhexyl phthalates. The scenario-based approach chosen in the present study provides a link between the knowledge on emission sources of phthalates and the concentrations of phthalate metabolites found in human urine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available