4.4 Review

Recent progress in the development of adenosine receptor ligands as antiinflammatory drugs

Journal

CURRENT TOPICS IN MEDICINAL CHEMISTRY
Volume 6, Issue 13, Pages 1375-1399

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/15680266106061375

Keywords

-

Ask authors/readers for more resources

Adenosine receptors belong to the family of G protein-coupled receptors. Four distinct subtypes are known, termed A(1), A(2A), A(2B) and A(3). Adenosine is an important signaling molecule which is released under inflammatory conditions. It can show antiinflammatory as well as proinflammatory activities, and the contribution of the specific adenosine receptor subtypes in various cells, tissues and organs is complex. Agonists selective for adenosine A, receptors show antinociceptive activity and are active in animal models of neuropathic and inflammatory pain. Adenosine A(2A) receptor agonists are potent antiinflammatory drugs. A(2A)-selective antagonists have shown antihyperalgesic activity in animal models of inflammatory pain. For A(2B) agonists as well as A(2B) antagonists anti inflammatory activity has been postulated. Selective A(2B) antagonists were shown to decrease (inflammatory) pain, and are promising candidates for the treatment of asthma. Adenosine A(3) receptor agonists appear to be proinflammatory, while there is evidence for an anti inflammatory effect of A(3) antagonists. There are some contradictory findings, and A(3) agonists are being developed for the treatment of inflammatory diseases such as arthritis. Indirect mechanisms increasing the extracellular concentration of adenosine using adenosine kinase inhibitors, adenosine deaminase inhibitors or adenosine uptake inhibitors, or increasing the potency of adenosine at the A(1) receptor subtype by allosteric modulators lead to potent antinociceptive and anti inflammatory activity. The advantage of indirectly acting drugs may be their site- and event-specific action since they are only active where adenosine has been released. In the past decade considerable progress has been made towards the identification of novel lead structures and the development of potent and selective ligands for all four adenosine receptor subtypes. A large number of patents has recently been filed and the field is finally in the process of translating many years of basic science into therapeutic application. This review article will focus on compounds published or patented within the past three years.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available