4.6 Article

Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations

Journal

SIAM JOURNAL ON SCIENTIFIC COMPUTING
Volume 28, Issue 1, Pages 47-74

Publisher

SIAM PUBLICATIONS
DOI: 10.1137/040605060

Keywords

reaction-diffusion; stochastic chemical kinetics; complex geometry; embedded boundary

Ask authors/readers for more resources

A method is developed for incorporating diffusion of chemicals in complex geometries into stochastic chemical kinetics simulations. Systems are modeled using the reaction-diffusion master equation, with jump rates for diffusive motion between mesh cells calculated from the discretization weights of an embedded boundary method. Since diffusive jumps between cells are treated as first order reactions, individual realizations of the stochastic process can be created by the Gillespie method. Numerical convergence results for the underlying embedded boundary method, and for the stochastic reaction-diffusion method, are presented in two dimensions. A two-dimensional model of transcription, translation, and nuclear membrane transport in eukaryotic cells is presented to demonstrate the feasibility of the method in studying cell-wide biological processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available