4.0 Article

Modifications for the improvement of catalyst materials for hydrogen evolution

Journal

JOURNAL OF THE SERBIAN CHEMICAL SOCIETY
Volume 71, Issue 2, Pages 149-165

Publisher

SERBIAN CHEMICAL SOC
DOI: 10.2298/JSC0602149P

Keywords

composite electrocatalysts; hydrogen evolution; electronic interaction; real surface area

Ask authors/readers for more resources

The structural and electrocatalytic characteristics of composite materials based on non-precious metals were studied. Precursors of metallic phase (Ni, Co or CoNi) and oxide phase (TiO2) were grafted oil a carbon substrate (Vulcan XC-72) by the sol-gel procedure and thermally treated at 250 degrees C. Ni and CoNi crystals of 10-20 run were produced, in contrast the Co and TiO2 were amorphous. The dissimilar electronic character of the components gives rise to a significant electrocatalytic activity for the hydrogen evolution reaction (HER), even in the basic series of prepared materials. Further improvement of the catalysts was achieved by modification of all three components. Hence, Mo was added into the metallic phase, TiO2 was converted into the crystalline form and multiwall carbon nanotubes (MWCNTs) were used instead of carbon particles. The improvement, expressed in terms of the lowering the hydrogen evolution overpotential at 60 mA cm(-2), was the most pronounced ill the Ni-based systems grafted oil MWCNTs (120 mV lower HER overpotential) compared to 60 mV in case of Ni-based systems grafted on crystalline TiO2 (TiO2 prepared at 450 degrees C) and of Ni-based systems containing 25 at.% Mo. Nevertheless, even with the realized enhancement, of all the tested materials, the Co-based systems remained superior HER catalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available