4.4 Article

Cellular responses of the ciliate, Tetrahymena thermophila, to far infrared irradiation

Journal

PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES
Volume 5, Issue 9, Pages 799-807

Publisher

SPRINGERNATURE
DOI: 10.1039/b601741j

Keywords

-

Ask authors/readers for more resources

Infrared rays from sunlight permeate the earth's atmosphere, yet little is known about their interactions with living organisms. To learn whether they affect cell structure and function, we tested the ciliated protozoan, Tetrahymena thermophila. These unicellular eukaryotes aggregate in swarms near the surface of freshwater habitats, where direct and diffuse solar radiation impinge upon the water-air interface. We report that populations irradiated in laboratory cultures grew and mated normally, but major changes occurred in cell physiology during the stationary phase. Early on, there were significant reductions in chromatin body size and the antibody reactivity of methyl groups on lysine residues 4 and 9 in histone H3. Later, when cells began to starve, messenger RNAs for key proteins related to chromatin structure, intermediary metabolism and cellular motility increased from two- to nearly nine-fold. Metabolic activity, swimming speed and linearity of motion also increased, and spindle shaped cells with a caudal cilium appeared. Our findings suggest that infrared radiation enhances differentiation towards a dispersal cell-like phenotype in saturated populations of Tetrahymena thermophila.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available