4.5 Article

Friction and wear characteristics of carbon-epoxy and glass-epoxy woven roving fiber composites

Journal

JOURNAL OF REINFORCED PLASTICS AND COMPOSITES
Volume 25, Issue 7, Pages 771-782

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0731684406063540

Keywords

friction and wear; carbon-epoxy (C-E) composite; pin-on-disc setup; glass-epoxy (G-E) composite; scanning electron microscope

Ask authors/readers for more resources

Polymer materials when reinforced with high modulus fibers yield higher strength, higher stiffness, better toughness, and good dimensional stability. Fiber reinforcements are effective in reducing wear in adhesive situations in addition to increasing the strength and stiffness. The adhesive conditions are generally encountered in automotive and aerospace applications. In such applications, the types of reinforcement material used are important from the point of improved performance under different tribo situations. In this particular investigation, carbon-epoxy (C-E) composite is compared with that of glass-epoxy (G-E) composites for tribological properties using a pin-on-disc set up. The tests are conducted by subjecting C-E samples sliding against a hard steel disc (62 HRC) under different sliding and loading conditions. This article highlights the friction and wear behavior of these composites run for a constant sliding distance, where in the C-E composites show lower friction and lower slide wear loss compared to G-E composites irrespective of the load or speed employed. Some of the wear data are supported by the scanning electron microscope (SEM) images.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available