4.6 Article

Numerical methods for differential equations in random domains

Journal

SIAM JOURNAL ON SCIENTIFIC COMPUTING
Volume 28, Issue 3, Pages 1167-1185

Publisher

SIAM PUBLICATIONS
DOI: 10.1137/040613160

Keywords

random domain; stochastic inputs; differential equations; uncertainty quantification

Ask authors/readers for more resources

Physical phenomena in domains with rough boundaries play an important role in a variety of applications. Often the topology of such boundaries cannot be accurately described in all of its relevant detail due to either insufficient data or measurement errors or both. This topological uncertainty can be efficiently handled by treating rough boundaries as random fields, so that an underlying physical phenomenon is described by deterministic or stochastic differential equations in random domains. To deal with this class of problems, we propose a novel computational framework, which is based on using stochastic mappings to transform the original deterministic/stochastic problem in a random domain into a stochastic problem in a deterministic domain. The latter problem has been studied more extensively, and existing analytical/numerical techniques can be readily applied. In this paper, we employ both a stochastic Galerkin method and Monte Carlo simulations to solve the transformed stochastic problem. We demonstrate our approach by applying it to an elliptic problem in single- and double-connected random domains, and comment on the accuracy and convergence of the numerical methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available