4.5 Article

Competitive binding of pentraxins and IgM to newly exposed epitopes on late apoptotic cells

Journal

CELLULAR IMMUNOLOGY
Volume 239, Issue 1, Pages 14-21

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.cellimm.2006.02.006

Keywords

apoptosis; pentraxins; IgM; phospholipids

Ask authors/readers for more resources

A random distribution of phospholipids among the inner and outer leaflet of the cell membrane occurs during apoptosis and is known as membrane flip-flop. Flip-flopped cells have binding sites for various plasma proteins, such as IgM and the pentraxins C-reactive protein (CRP) and serum amyloid P component (SAP). In this study, we investigated whether pentraxins and IgM antibodies recognize the same binding sites on apoptotic cells, and whether phospholipids constitute these binding sites. Except for SAP which also bound to early apoptotic cells, pentraxins and IgM preferentially bound to late apoptotic cells. Competition experiments with different phosphatemonoesters revealed that CRP and SAP as well as part of the IgM bound to the phospholipids head groups, SAP mainly to phosphorylethanolamine, CRP to phosphorylcholine and phosphorylethanolamine and to a lesser extent to phosphorylserine, and IgM to phosphorylcholine and phosphorylserine. These results were confirmed in experiments in which proteins were adsorbed from plasma with artificial phospholipids particles. IgM and the pentraxins variably competed for the same binding sites on late apoptotic cells, SAP having the highest and CRP the lowest apparent affinity. We conclude that CRP, SAP, and part of the IgM bind to the phospholipid head groups exposed on apoptotic cells. This shared specificity as well as their shared capability to activate complement, suggest that IgM and the pentraxins CRP and SAP exert similar functions in the removal of apoptotic cells. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available