4.1 Review

The role of TRP channels in oxidative stress-induced cell death

Journal

JOURNAL OF MEMBRANE BIOLOGY
Volume 209, Issue 1, Pages 31-41

Publisher

SPRINGER
DOI: 10.1007/s00232-005-0839-3

Keywords

apoptosis; intracellular Ca2+ stop; oxidative stress; TRPC3; TRPM2; TRPM7

Ask authors/readers for more resources

The transient receptor potential (TRP) protein superfamily is a diverse group of voltage-independent calcium-permeable cation channels expressed in mammalian cells. These channels have been divided into six subfamilies, and two of them, TRPC and TRPM, have members that are widely expressed and activated by oxidative stress. TRPC3 and TRPC4 are activated by oxidants, which induce Na+ and Ca2+ entry into cells through mechanisms that are dependent on phospholipase C. TRPM2 is activated by oxidative stress or TNF alpha, and the mechanism involves production of ADP-ribose, which binds to an ADP-ribose binding cleft in the TRPM2 C-terminus. Treatment of HEK 293T cells expressing TRPM2 with H2O2 resulted in Ca2+ influx and increased susceptibility to cell death, whereas coexpression of the dominant negative isoform TRPM2-S suppressed H2O2-induced Ca2+ influx, the increase in [Ca2+](i), and onset of apoptosis. U937-ecoR monocytic cells expressing increased levels of TRPM2 also exhibited significantly increased [Ca2+](i) and increased apoptosis after treatment with H2O2 or TNF alpha. A dramatic increase in caspase 8, 9, 3, 7, and PARP cleavage was observed in TRPM2-expressing cells, demonstrating a downstream mechanism through which cell death is mediated. Inhibition of endogenous TRPM2 function through three approaches, depletion of TRPM2 by RNA interference, blockade of the increase in [Ca2+](i) through TRPM2 by calcium chelation, or expression of the dominant negative splice variant TRPM2-S protected cell viability. H2O2 and amyloid beta-peptide also induced cell death in primary cultures of rat striatal cells, which endogenously express TRPM2. TRPM7 is activated by reactive oxygen species/nitrogen species, resulting in cation conductance and anoxic neuronal cell death, which is rescued by suppression of TRPM7 expression. TRPM2 and TRPM7 channels are physiologically important in oxidative stress-induced cell death.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available