4.7 Article

Influence of binders on properties of sintered fly ash aggregate

Journal

CEMENT & CONCRETE COMPOSITES
Volume 28, Issue 1, Pages 33-38

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.cemconcomp.2005.06.005

Keywords

fly ash; pelletization; aggregate; sintering; XRD; SEM; bentonite

Ask authors/readers for more resources

Sustained research and development work on the utilization of fly ash for various productive uses have been carried out in the past. In the construction industry, major attention has been devoted to the use of fly ash in concrete as a cement replacement. The production of artificial lightweight coarse aggregate using fly ash has potential for its large-scale utilization in the construction industry and this is an area that merits attention in many parts of the world, bearing in mind the rapid dwindling of sources of natural aggregates. As only limited details on manufacture and parameters influencing properties of sintered fly ash aggregates have been reported in the literature, a systematic study was undertaken. In this paper, the relative performance of three binders, viz., cement, lime and bentonite, on the properties of sintered fly ash aggregate is reported. The salient observations are (i) the characterization studies on sintered fly ash aggregates show that the properties of aggregates depend on the type of binder and its dosage, (ii) the significant improvement in strength and reduction in water absorption of sintered fly ash aggregate is observed when bentonite is added with fly ash, (iii) the binders used did not alter the chemical composition, while they influence the microstructure of the aggregate, which results in enhancement in the properties of aggregates. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available