4.3 Article

Modeling population dynamics of a tea pest with temperature-dependent development: predicting emergence timing and potential damage

Journal

ECOLOGICAL RESEARCH
Volume 21, Issue 1, Pages 107-116

Publisher

SPRINGER TOKYO
DOI: 10.1007/s11284-005-0099-9

Keywords

tea pest; temperature-dependent development; population dynamics; synchrony of plant-pest phenology; global warming

Categories

Ask authors/readers for more resources

The tea leaf roller, Caloptilia theivora Walsingham (Lepidoptera: Gracillariinae), is one of the serious pests of tea plants in Japan. To understand the mechanism of seasonal occurrence of this insect pest, we developed a population dynamics model that explicitly incorporates the temperature-dependent development of the pest. The model predictions were compared with observed captures in pheromone traps at the experimental site of the Kagoshima Tea Experiment Research Station in Japan. The results showed that the emergence timing of the insect pest observed in the field was determined primarily by temperature. The relationship between the timing of adult emergence and the leaf damage level was also studied using a logistic regression model. The infestation level decreased as the interval between the adult peak emergence date and the date of tea plucking increased, implying that asynchrony between plant phenology and emergence of the insect pest is a critical factor reducing damage level. We examined how the damage level changes according to global warming. Increased temperature made the timing of insect appearance forward and enhance asynchrony of plant-pest phenology. Therefore, reduction of damage level by the insect pest is expected under global warming.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available