4.5 Article

Spontaneous dynamics of asymmetric random recurrent spiking neural networks

Journal

NEURAL COMPUTATION
Volume 18, Issue 1, Pages 60-79

Publisher

M I T PRESS
DOI: 10.1162/089976606774841567

Keywords

-

Ask authors/readers for more resources

In this letter, we study the effect of a unique initial stimulation on random recurrent networks of leaky integrate-and-fire neurons. Indeed, given a stochastic connectivity, this so-called spontaneous mode exhibits various nontrivial dynamics. This study is based on a mathematical formalism that allows us to examine the variability of the afterward dynamics according to the parameters of the weight distribution. Under the independence hypothesis (e.g., in the case of very large networks), we are able to compute the average number of neurons that fire at a given time-the spiking activity. In accordance with numerical simulations, we prove that this spiking activity reaches a steady state. We characterize this steady state and explore the transients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available