4.5 Article

An investigation of pulsating turbulent open channel flow by large eddy simulation

Journal

COMPUTERS & FLUIDS
Volume 35, Issue 1, Pages 74-102

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compfluid.2004.10.001

Keywords

-

Ask authors/readers for more resources

Pulsating turbulent open channel flow is investigated by use of large eddy simulation (LES) technique coupled with a dynamic subgrid-scale (SGS) model for turbulent SGS stress. The three-dimensional filtered Navier-Stokes equation is numerically solved by a fractional-step method. The objective of this study is to deal with the behaviors of pulsating turbulent open channel flow, in particular turbulence characteristics in the free surface-influenced layer, and to examine the reliability of the LES approach for predicting the pulsating turbulent flow with a free surface. In this study, the frequency of driving pressure gradient ranges low, medium and high value. The mean and phase-averaged statistical turbulence quantities, the resolved turbulent kinetic energy and Reynolds stresses budgets, and the flow structures are obtained and analyzed. With the increase of the driving frequency, the depth of the surface-influenced layer increases and the turbulent Stokes length near the bottom wall decreases. Different turbulence characteristics between the accelerating and decelerating phases are interpreted comprehensively. Turbulence intensities reveal that turbulent flow has a strong anisotropy in the free surface-influenced layer, in particular in the decelerating phases during the pulsating cycle. The budget terms of the resolved turbulent kinetic energy, the vertical and spanwise Reynolds stresses in the free surface region are analyzed. The flow structures clearly exhibit that bursting processes near the bottom wall are ejected toward the surface and the most surface renewal events are closely correlated with the bursting processes. These processes are strengthened during the decelerating period since strong turbulence intensities are generated. (c) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available