4.4 Article

Natural Gas for High Load Dual-Fuel Reactivity Controlled Compression Ignition in Heavy-Duty Engines

Publisher

ASME
DOI: 10.1115/1.4030110

Keywords

-

Categories

Funding

  1. Engine Research Center's Direct-Injection Engine Research Consortium (DERC)

Ask authors/readers for more resources

Reactivity controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the use of gasoline as the premixed low-reactivity fuel. However, there is interest in exploring the use of alternative fuels in advanced combustion strategies. Due to the strong market growth of natural gas as a fuel in both mobile and stationary applications, a study on the use of methane for RCCI combustion was performed. Single cylinder heavy-duty engine experiments were undertaken to examine the operating range of the RCCI combustion strategy with methane/diesel fueling and were compared against gasoline/diesel RCCI operation. The experimental results show a significant load extension of RCCI engine operation with methane/diesel fueling compared to gasoline/diesel fueling. For gasoline/diesel fueling, a maximum load of 6.9 bar gross indicated mean effective pressure (IMEPg) at CA50 = 0 deg aTDC (after top dead center) and 7.0 bar IMEPg at CA50 = 4 deg aTDC was obtained without use of exhaust gas recirculation (EGR). For methane/diesel fueling, a maximum load of 15.4 bar IMEPg at CA50 = 0 deg aTDC and 17.3 bar IMEPg at CA50 = 4 deg aTDC was achieved, showing the effectiveness of the use of methane in extending the load limit for RCCI engine operation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available