4.5 Article

MM5 simulations of interannual change and the diurnal cycle of southern African regional climate

Journal

THEORETICAL AND APPLIED CLIMATOLOGY
Volume 86, Issue 1-4, Pages 63-80

Publisher

SPRINGER WIEN
DOI: 10.1007/s00704-005-0208-2

Keywords

-

Ask authors/readers for more resources

Two cumulus convection and two planetary boundary layer schemes are used to investigate the climate of southern Africa using the MM5 regional climate model. Both a wet (1988/89) and a dry (1991/92) summer (December-February, DJF) rainfall season are simulated and the results compared with three different observational sources: Climate Research Unit seasonal data (precipitation, 2m surface temperature, number of rain days), satellite-derived diurnal precipitation and the Surface Radiation Budget diurnal short-wave fluxes and optical depth. Using the ETA model boundary layer in MM5 simulates too much incident short-wave radiation at the surface at 12 UTC, whereas the medium range forecast model boundary layer yields a diurnal cycle of short-wave radiation closer to the observed. The Betts-Miller convection scheme in MM5 simulates peak rainfall later in the day and less rain days than observed, whereas when using the Kain-Fritsch convection scheme a peak rainfall earlier in the day and more rain days than observed are simulated. The intensity of the hydrological cycle is therefore dependent on the choice of convection scheme, which in turn is further modified by the boundary layer scheme. Precipitation during the wet 1988/89 season is reasonably captured by most simulations, though using the Betts-Miller scheme more accurately simulates rainfall during the dry 1991/92 season. Mean DJF biases in the surface temperature and diurnal temperature range are consistent with biases in the number of rain days and the diurnal cycles of surface moisture and energy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available