4.7 Review

The indentation size effect in the spherical indentation of iridium: A study via the conventional theory of mechanism-based strain gradient plasticity

Journal

INTERNATIONAL JOURNAL OF PLASTICITY
Volume 22, Issue 7, Pages 1265-1286

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2005.07.008

Keywords

indentation size effect

Ask authors/readers for more resources

The indentation size effect in spherical indentation experiments is studied via the conventional theory of mechanism-based strain gradient plasticity (CMSG) established from the Taylor dislocation model. Two approaches are adopted in the present study. The first, an extension of Johnson's [Johnson, K.L., 1970. The correlation of indentation experiments. Journal of the Mechanics and Physics of Solids 18, 115-126.] theoretical indentation model based on CMSG, fails to predict the experimental data for iridium. The finite element method for CMSG is used to characterize the indented material in the second approach. The predicted indentation hardness agrees well with the experimental data. A simple, analytic indentation model is established to give the indentation hardness H = root H-0(2) + 141 alpha(2) mu(2) b/R in terms of the radius R of the spherical indenter, where H-o is the indentation hardness without accounting for the tip radius effect (i.e., given by classical plasticity theories), mu is the shear modulus, b is the magnitude of the Burgers vector, and a is the empirical coefficient around 1/3 in the Taylor dislocation model. (C) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available