4.8 Article

De Novo Design of a Tumor-Penetrating Peptide

Journal

CANCER RESEARCH
Volume 73, Issue 2, Pages 804-812

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-12-1668

Keywords

-

Categories

Funding

  1. MolMed S.p.A. from the USAMRAA of the DoD [W81XWH-09-1-0698, W81XWH-08-1-0727]
  2. National Cancer Institute of the NIH [R01 CA 152327]
  3. Cancer Center Support Grant from the National Cancer Institute of the NIH [CA30199]

Ask authors/readers for more resources

Poor penetration of antitumor drugs into the extravascular tumor tissue is often a major factor limiting the efficacy of cancer treatments. Our group has recently described a strategy to enhance tumor penetration of chemotherapeutic drugs through use of iRGD peptide (CRGDK/RGPDC). This peptide comprises two sequence motifs: RGD, which binds to alpha v beta 3/5 integrins on tumor endothelia and tumor cells, and a cryptic CendR motif (R/KXXR/K-OH). Once integrin binding has brought iRGD to the tumor, the peptide is proteolytically cleaved to expose the cryptic CendR motif. The truncated peptide loses affinity for its primary receptor and binds to neuropilin-1, activating a tissue penetration pathway that delivers the peptide along with attached or co-administered payload into the tumor mass. Here, we describe the design of a new tumor-penetrating peptide based on the current knowledge of homing sequences and internalizing receptors. The tumor-homing motif in the new peptide is the NGR sequence, which binds to endothelial CD13. The NGR sequence was placed in the context of a CendR motif (RNGR), and this sequence was embedded in the iRGD framework. The resulting peptide (CRNGRGPDC, iNGR) homed to tumor vessels and penetrated into tumor tissue more effectively than the standard NGR peptide. iNGR induced greater tumor penetration of coupled nanoparticles and co-administered compounds than NGR. Doxorubicin given together with iNGR was significantly more efficacious than the drug alone. These results show that a tumor-specific, tissue-penetrating peptide can be constructed from known sequence elements. This principle may be useful in designing tissue-penetrating peptides for other diseases. Cancer Res; 73(2); 804-12. (C) 2012 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available