4.1 Article

Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators

Journal

Publisher

SPRINGER
DOI: 10.1007/s00249-005-0017-7

Keywords

peptide; self-assembly; hydrogel; tissue engineering; design; viscoelastic

Categories

Funding

  1. NATIONAL CENTER FOR RESEARCH RESOURCES [P20RR017716] Funding Source: NIH RePORTER
  2. NCRR NIH HHS [1-P20RR17716-01] Funding Source: Medline

Ask authors/readers for more resources

A class of peptides has been designed whose ability to self-assemble into hydrogel is dependent on their conformationally folded state. Under unfolding conditions aqueous peptide solutions are freely flowing having the viscosity of water. When folding is triggered by external stimuli, peptides adopt a beta-hairpin conformation that self-assembles into a highly crosslinked network of fibrils affording mechanically rigid hydrogels. MAX 1, a 20 residue, amphiphilic hairpin self-assembles via a mechanism which entails both lateral and facial self-assembly events to form a network of fibrils whose local structure consists of a bilayer of hairpins hydrogen bonded in the direction of fibril growth. Lateral self-assembly along the long axis of the fibril is mainly facilitated by intermolecular hydrogen bonding between the strands of distinct hairpins and the formation of hydrophobic contacts between residue side chains of laterally associating hairpins. Facial assembly is driven by the hydrophobic collapse of the valine-rich faces of the amphiphilic hairpins affording a bilayer laminate. The importance of forming lateral hydrophobic contacts during hairpin self-assembly and the relative contribution these interactions have towards nano-scale morphology and material rigidity is probed via the study of: MAX1, a hairpin designed to exploit lateral hydrophobic interactions; MAX 4, a peptide with reduced ability to form these interactions; and MAX5, a control peptide. CD spectroscopy and rheological experiments suggest that the formation of lateral hydrophobic interactions aids the kinetics of assembly and contributes to the mechanical rigidity of the hydrogel. Transmission electron microscopy (TEM) shows that these interactions play an essential role in the self-assembly process leading to distinct nano-scale morphologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available