4.3 Article Proceedings Paper

Preclinical cardiac safety assessment of pharmaceutical compounds using an integrated systems-based computer model of the heart

Journal

PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY
Volume 90, Issue 1-3, Pages 414-443

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pbiomolbio.2005.06.006

Keywords

-

Ask authors/readers for more resources

Blockade of the delayed rectifier potassium channel current, I-Kr, has been associated with drug-induced QT prolongation in the electrocardiogram and life-threatening cardiac arrhythmias. However, it is increasingly clear that compound-induced interactions with multiple cardiac ion channels may significantly affect QT prolongation that would result from inhibition of only I-Kr [Redfern, W.S., Carlsson, L., et al., 2003. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58(1), 32-45]. Such an assessment may not be feasible in vitro, due to multifactorial processes that are also time-dependent and highly non-linear. Limited preclinical data, I-Kr hERG assay and canine Purkinje fiber (PF) action potentials (APs) [Gintant, G.A., Limberis, J.T., McDermott, J.S., Wegner, C.D., Cox, B.F., 2001. The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J. Cardiovasc. Pharmacol. 37(5), 607-618], were used for two test compounds in a systems-based modeling platform of cardiac electrophysiology [Muzikant, A.L., Penland, R.C., 2002. Models for profiling the potential QT prolongation risk of drugs. Curr. Opin. Drug. Discov. Dev. 5(1), 127-35] to: (i) convert a canine myocyte model to a PF model by training functional current parameters to the AP data; (ii) reverse engineer the compounds' effects on five channel currents other than I-Kr, predicting significant IC50 values for I-Na+,I-sustained and ICa2+ which were subsequently experimentally validated; (111) use the predicted,L-type, (I-Na+,I-sustained and I-Ca2+,I-L-type) and measured (I-Kr) IC50 values to simulate dose-dependent effects of the compounds on APs in endocardial, mid-myocardial, and epicardiac ventricular cells; and (iv) integrate the three types of cellular responses into a tissue-level spatial model, which quantifiably predicted no potential for the test compounds to induce either QT prolongation or increased transmural dispersion of repolarization in a dose-dependent and reverse rate-dependent fashion, despite their inhibition of I-Kr in vitro. (c) 2005 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available