4.1 Article Proceedings Paper

New enzymes, new pathways and an alternative view on starch biosynthesis in both photosynthetic and heterotrophic tissues of plants

Journal

BIOCATALYSIS AND BIOTRANSFORMATION
Volume 24, Issue 1-2, Pages 63-76

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10242420500518839

Keywords

ADPglucose; ADPglucose pyrophosphorylase; Calvin cycle; starch; starch turnover; sucrose; sucrose synthase

Ask authors/readers for more resources

Since the initial discovery showing that ADPglucose (ADPG) serves as the universal glucosyl donor in the reaction catalyzed by starch synthase, the mechanism of starch biosynthesis in both leaves and heterotrophic organs has generally been considered to be an unidirectional process wherein ADPG pyrophosphorylase (AGPase) exclusively catalyzes the synthesis of ADPG and acts as the major limiting step of the gluconeogenic process. There is however mounting evidence that ADPG linked to starch biosynthesis is produced de novo in the cytosol by means of sucrose synthase (SuSy). In this review we show and discuss the numerous pitfalls of the 'classic' view of starch biosynthesis. In addition, we describe many overlooked aspects of both ADPG and starch metabolism. With the overall data we propose an 'alternative' model of starch biosynthesis, applicable to both photosynthetic and heterotrophic tissues, according to which both sucrose and starch biosynthetic processes are tightly interconnected by means of an ADPG synthesizing SuSy activity. According to this new view, starch metabolism embodies catabolic and anabolic reactions taking place simultaneously in which AGPase plays a vital role in the scavenging of starch breakdown products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available