4.6 Review

Eicosanoid transcellular biosynthesis: From cell-cell interactions to in vivo tissue responses

Journal

PHARMACOLOGICAL REVIEWS
Volume 58, Issue 3, Pages 375-388

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/pr.58.3.8

Keywords

-

Funding

  1. NHLBI NIH HHS [HL 25785] Funding Source: Medline
  2. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R37HL025785, R01HL025785] Funding Source: NIH RePORTER

Ask authors/readers for more resources

The biosynthesis of the biologically active metabolites of arachidonic acid involves a number of enzymes that are differentially expressed in cells. Prostaglandins and thromboxanes are derived from the chemically unstable prostaglandin (PG) H-2 intermediate synthesized by PGH synthases (cyclooxygenase-1/2) and leukotrienes from chemically unstable leukotriene A(4) by 5-lipoxygenase. Additional enzymes transform these reactive intermediates to a variety of chemical structures known collectively as the lipid mediators. Although some cells have the complete cassette of enzymes required for the production of biologically active prostaglandins and leukotrienes, the actual biosynthetic events often are a result of cell-cell interaction and a transfer of these chemically reactive intermediates, PGH(2) and leukotriene A(4), between cells. This process has come to be known as transcellular biosynthesis of eicosanoids and requires a donor cell to synthesize and release one component of the biosynthetic cascade and a second, accessory cell to take up that intermediate and process each into the final biologically active product. This review focuses on the evidence for transcellular biosynthetic events for prostaglandins, leukotrienes, and lipoxins occurring during cell-cell interactions. Evidence for arachidonic acid serving as a transcellular biosynthetic intermediate is presented. Experiments for transcellular events taking place in vivo that reveal the true complexity of eicosanoid biosynthesis within tissues are also reviewed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available