4.3 Review

Surfactant mediated assembly of gold nanowires on surfaces

Journal

JOURNAL OF EXPERIMENTAL NANOSCIENCE
Volume 1, Issue 2, Pages 125-142

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17458080600669785

Keywords

nanowire; self-assembly; nanorod; SAM; assembly

Funding

  1. Engineering and Physical Sciences Research Council [EP/C006755/1] Funding Source: researchfish

Ask authors/readers for more resources

The potential of surfactant interactions to direct both the placement and orientation of gold nanowires onto surfaces from solution has been investigated. Gold nanowires were synthesized by template electrodeposition in porous aluminum oxide membranes. Their assembly onto surfaces was controlled by functionalizing the nanowires and surfaces with self-assembled monolayers of thiol based surfactants. Nanowires were assembled from solution onto patterned functional surfaces, and after excess solvent had evaporated the arrangement of nanowires on the surface was observed. A variety of assembly techniques, based upon wettability, electrostatic, or chemical interactions have been studied. Nanowire assembly onto surfaces with patterned wettability resulted in the placement of nanowires on hydrophilic regions with a specific orientation. Hydrogen bonding and carboxylate salt attachment of mercaptoundecanoic acid functionalized nanowires to reactive regions of patterned surfaces has been demonstrated, with unbound wires removed by washing. Similarly, electrostatic interactions between charged nanowires and surfaces have been demonstrated to preferentially assemble nanowires onto oppositely charged surface regions. Although selective attachment of nanowires to reactive surface regions was achieved by both chemical and electrostatic assembly techniques, these methods did not control the orientation of assembled nanowires.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available