4.2 Review

Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods

Journal

DISEASE MARKERS
Volume 22, Issue 1-2, Pages 39-64

Publisher

HINDAWI LTD
DOI: 10.1155/2006/202938

Keywords

lipidomics; phospholipidomics; sphingolipidomics; cholesterol; proteomics; mass spectrometry; electrospray ionization; phospholipases; enzymes; lipoproteins; cytochrome P450; acetylhydrolases; fatty acids; eicosanoids; secretion; ion channels; receptors; inflammation; oxidation; cerebrospinal fluid; brain; neurological diseases

Funding

  1. PHS HHS [R01#11020991] Funding Source: Medline

Ask authors/readers for more resources

Lipids comprise the bulk of the dry mass of the brain. ln addition to providing structural integrity to membranes, insulation to cells and acting as a source of energy, lipids can be rapidly converted to mediators of inflammation or to signaling molecules that control molecular and cellular events in the brain. The advent of soft ionization procedures such as electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) have made it possible for compositional studies of the diverse lipid structures that are present in brain. These include phospholipids, ceramides, sphingomyelin, cerebrosides, cholesterol and their oxidized derivatives. Lipid analyses have delineated metabolic defects in disease conditions including mental retardation, Parkinson's Disease (PD), schizophrenia, Alzheimer's Disease (AD), depression, brain development, and ischemic stroke. In this review, we examine the structure of the major lipid classes in the brain, describe methods used for their characterization, and evaluate their role in neurological diseases. The potential utility of characterizing lipid markers in the brain, with specific emphasis on disease mechanisms, will be discussed. Additionally, we describe several proteomic strategies for characterizing lipid-metabolizing proteins in human cerebrospinal fluid (CSF). These proteins may be potential therapeutic targets since they transport lipids required for neuronal growth or convert lipids into molecules that control brain physiology. Combining lipidomics and proteomics will enhance existing knowledge of disease pathology and increase the likelihood of discovering specific markers and biochemical mechanisms of brain diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available